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Abstract In this paper, we present a new approach to solve a class of optimal discrete-valued
control problems. This type of problem is first transformed into an equivalent two-level opti-
mization problem involving a combination of a discrete optimization problem and a standard
optimal control problem. The standard optimal control problem can be solved by existing
optimal control software packages such as MISER 3.2. For the discrete optimization prob-
lem, a discrete filled function method is developed to solve it. A numerical example is solved
to illustrate the efficiency of our method.

Keywords Discrete-valued control · Optimal control · Parametrization · Filled function

1 Introduction

Optimal control problems arise in a variety of fields, such as engineering, economics, and
biomedicine. However, in many practical applications, the control can only take values from
a discrete set, such as switched amplifier designs [7], optimal driving strategies for trains
[2] and the management of batteries in a submarine [6]. For these optimal control problems,
we need to find switching points and the corresponding control values from a discrete set.
Since the control evolves in a discrete set and the switching points are continuous variables,
these optimal control problems are mixed integer optimization problems. So far, there are no
efficient algorithms with polynomial-time complexity for solving these problems. They are
in fact, NP hard.

In [5], a method is developed for solving this class of optimal discrete-valued control
problems. A time scaling transformation is used to transform the optimal discrete-valued
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control problem into an optimal parameter selection problem which is solvable by existing
optimal control techniques. However, if the maximum number of switchings is pre-fixed, the
solution obtained by the method in [5] may not give a feasible solution to the original problem,
as the transformed problem in [5] is not equivalent to the original under this condition. In this
paper, we propose a two-level optimization approach to solve this optimal discrete-valued
control problem. In the first level, the time scaling transformation used in [4] and [5], is
introduced to transform the switching points for a given switching sequence into pre-fixed
knots in a new time horizon. The resulting problem is a standard optimal parameter selection
problem and hence solvable by existing optimal control methods such as MISER [3]. In the
second level, a discrete filled function method developed in [1,11] is used to obtain a method
for finding the optimal switching sequence.

The rest of the paper is organized as follows. In Sect. 2, we formulate the problem to be
solved. In Sect. 3, we reformulate our problem as a two-level optimization problem. The first
level is a standard optimal control problem, and a gradient-based method is introduced and
hence the optimal control software package MISER can be used to solve it. The second level
is a discrete optimization problem. In Sect. 4, we introduce a discrete filled function method
to solve the discrete optimization problem. In Sect. 5, a numerical example is solved using
our method. In Sect. 6, we give some concluding remarks.

2 Problem formulation

Consider a process described by the following differential equations defined on (0, T ] :
ẋ = f (x, u,t) , (1)

with the initial condition

x (0) = x0, (2)

where x ∈ R
n and u ∈ R

m are, respectively, the state and control vectors. T is the terminal
time. The function f is assumed to be continuously differentiable with respect to all its
arguments.

Let U be defined by U = {u1, u2, . . . , uK }. A function u is said to be an admissible
control if

u (t) = bi , t ∈ [
τi , τi+1

]
, i = 0, 1, . . . , N − 1, (3)

where bi ∈ U, and τ1, τ2, . . . , τN−1 are the switching points of u satisfying:

0 = τ0 < τ1 < τ2 < · · · < τN−1 < τN = T .

Let U be the class of all such admissible controls. We assume that N − 1 is the maximum
possible number of switching points for any u ∈ U . For each u ∈ U , we integrate Eq. 1
successively over each interval

[
τi , τi+1

]
, i = 0, 1, . . . , N − 1. The obtained x (t) is con-

tinuous and piecewise differentiable on (0, T ). It is called the state of the system (1)–(2)
corresponding to u ∈ U . We assume that the function f also satisfies the following condition:
There exists a constant M , such that

‖f (x, u,t)‖ ≤ M (1 + ‖x‖) , (4)

for all (x, u,t) ∈ R
n ×U× [0, T ], where ‖·‖ denotes the usual norm of R

n . Now, we formally
state our optimal control problem as follows:
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Given the dynamical system (1), (2), find a u ∈ U such that the cost functional

J0 (u) = ���0 (x (T )) +
∫ T

0
L0 (x, u) dt (5)

is minimized subject to the following constraints.

hi (x (t)) ≥ 0, ∀ t ∈ [0, T ] , i = 1, . . . , L . (6)

where ���0, L0, hi , i = 1, . . . , L , are continuously differentiable functions in their respective
arguments. Let this problem be referred to as Problem (P).

A control u ∈ U is said to be a feasible control if it satisfies (6). Let F be the set of all
such feasible controls. We assume that F is not empty.

Remark 2.1 In solving Problem (P), we need to determine the switching sequence bi , i =
0, 1, . . . , N −1, and the switching points τi , i = 1, . . . , N −1. However, the gradients of the
cost functional (5) with respect to switching points τi are not continuous (see Theorem 5.3.1 of
[9]). To overcome this difficulty, we will adopt an existing time scaling transformation to map
the switching points into fixed points in a new time horizon. For dealing with the functional
inequality constraints (6), we employ the constraint transcription technique developed in
Chapter 8 of [9]. For determining the optimal switching sequence, a discrete filled function
method is developed in Sect. 4.

3 Problem transformation

Consider Problem (P). For each i = 1, 2, . . . , K , introduce a transformation

yi =
K∑

j=1

u jvi, j (7)

with the following constraints imposed on vi, j :

vi, j = 0 or 1, j = 1, 2, . . . , K , i = 1, . . . , N , (8)

K∑

j=1

vi, j = 1, i = 1, . . . , N . (9)

Let (3) be written as:

u (t) = yi , t ∈ [
τi , τi+1

]
, i = 0, 1, . . . , N − 1. (10)

Also, we introduce the following time scaling transformation

dt

ds
= ν (s) , (11)

with initial condition

t (0) = 0, (12)

where

ν (s) =
N∑

i=1

δiχ[i−1,i] (s) , (13)
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and

N∑

i=1

δi = T, δi ≥ 0, i = 1, . . . , N . (14)

Let v = [
v�

1 , v�
2 , . . . , v�

N

]�
and v�

i = [
vi,1, vi,2, . . . , vi,K

]�, i = 1, . . . , N . Define

��� =
{

v ∈ R
N K , v satisfies (8) and (9)

}
, (15)

and

� =
{

δ = [δ1, δ2, . . . , δN ]� ∈ R
N ,

N∑

i=1

δi = T, δi ≥ 0, i = 1, . . . , N

}

. (16)

Furthermore, we construct

g� (h) =
⎧
⎨

⎩

h, if h ≤ −� ;
− (� − h)2 /4�, if − � < h < � ;
0, if h ≥ �.

(17)

Let the following problem be referred to as Problem
(
T Pγ,�

)
:

Subject to the dynamical system

dx
ds

= ν (s) f (x (s) , u (s) , t (s)) , x (0) = x0, (18)

find a (δ, v) ∈ � × ��� such that

J (δ, v) = ���0 (x (N )) +
∫ N

0
L0 (x (s) , u (s)) ds + γ

L∑

i=1

∫ N

0
g� (hi (x (s))) ds (19)

is minimized, where γ > 0 and � > 0 are adjusted parameters, while

u (s) =
N∑

i=1

yiχ[i−1,i] (s) , (20)

and yi are defined by (7).
Define


 = {δ ∈ � : hi (x (s)) ≥ 0, i = 1, . . . , L , for all s ∈ [0, N ]} ,

and


̊ = {δ ∈ � : hi (x (s)) > 0, i = 1, . . . , L , for all s ∈ [0, N ]} .

We assume that the following condition is satisfied:

Assumption 3.1 For any δ ∈ 


, there exists a δ̄ ∈ 
̊

, such that

αδ̄ + (1 − α) δ ∈ 
̊

 for all α ∈ (0, 1] . (21)

This condition, which was first introduced in [9], is a standard assumption made in many
papers on semi-infinite optimization problems. See, for example, [8]. According to (4) and
Assumption 3.1, we have the following theorem:
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Theorem 3.1 For any � > 0, there exists a γ (�) > 0, such that for all γ , γ ≥ γ (�), if
(δ∗,γ , v∗,γ ) ∈ �×��� is an optimal solution of Problem (T Pγ,� ), then the solution, denoted by
x (·|δ∗,γ , v∗,γ ) of system (18) satisfies hi (x (s|δ∗,γ , v∗,γ )) ≥ 0,∀s ∈ [0, N ] , i = 1, . . . , L.
Let such a γ be denoted as γ̂ (�). Then, as � → 0, the sequence of the optimal solutions
of Problems (T Pγ̂ (�),� ) converges to the optimal solution of Problem (P).

Proof The proof is similar to that given for Theorem 3.2 in [10]. 	

From Theorem 3.1, we see that the solution of Problem (P) can be obtained via solving a

sequence of Problems
(
T Pγ,�

)
by decreasing the value of � while appropriately increasing

the value of γ . Clearly, each Problem
(
T Pγ,�

)
is a mixed-integer programming problem.

We propose to decompose it into a two-level optimization problem as follows:

min
v∈���

J̄ (v) (22)

where

J̄ (v) = min
δ∈�

J (δ, v) . (23)

Let the first level problem be referred to as Problem
(
T Pγ,�

)
1, while the second level problem

be referred to as Problem
(
T Pγ,�

)
2.

For every fixed v, we need to solve Problem
(
T Pγ,�

)
2. We note that Problem

(
T Pγ,�

)
2,

for each given � and γ , is a standard optimal parameter selection problem. It is to be solved
as detailed in the following algorithm.

Algorithm 3.1 For each given v ∈ ���.

Step 1 Initialize γ , � and the tolerance ε. Set k = 1.
Step 2 Use a gradient-based algorithm method (such as Algorithm 5.2.1, Algorithm 5.2.2

and Algorithm 5.2.3 in [9]) to solve Problem
(
T Pγ,�

)
2 and obtain its optimal

solution δ
∗,k
v and the corresponding cost J

(
δ
∗,k
v , v

)
.

Step 3 If the solution, x
(
·|

(
δ
∗,k
v , v

))
, of the (18) corresponding to

(
δ
∗,k
v , v

)
satisfies

hi

(
x

(
s|

(
δ
∗,k
v , v

)))
≥ 0, ∀ s ∈ [0, N ], i = 1, . . . , L , go to Step 4 and set k = k+1.

Otherwise, set γ = 10γ and goto Step 2.

Step 4 If
∣∣∣J

(
δ
∗,k
v , v

)
− J

(
δ
∗,k−1
v , v

)∣∣∣ ≤ ε, go to Step 5. Otherwise, set γ = 10γ and

� = �/10, goto Step 2.
Step 5 δ

∗,k
v is an approximate optimal solution of Problem (P) for the fixed v ∈ ���.

Remark 3.1 From Theorem 3.1, we see that the increment of γ as detailed in the loop between
Step 2 and Step 3 is a finite process. However, it should be stressed that the validity of Theorem
3.1 is based on the assumption that the optimal solution, δ∗,k

v , of Problem
(
T Pγ,�

)
is a global

optimal solution. This does pose a problem, as any gradient based method produces, at best,
a local minimizer. Thus, the filled function method proposed in [10] will be used. More
specifically, once a local minimizer is obtained, a filled function as described in [10] will
be constructed. Then, by minimizing the filled function, its local minimizer will lead to
a feasible solution of Problem

(
T Pγ,�

)
from which a better local minimizer of Problem(

T Pγ,�

)
will be obtained. This process is repeated until there exists no local minimizer of

the corresponding filled function. For details, see Algorithm 5.1 and Algorithm 5.2 in [10].

In the next section, we will derive an algorithm to solve Problem
(
T Pγ,�

)
1.
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4 Discrete filled function method

Let ei, j be an element of R
Nm with the i-th component 1 and the remaining components 0,

ẽi, j be an element of R
Nm with the j-th component −1 and the remaining components 0.

Define

D = {
ei, j , ẽi, j , i, j = 1, . . . , Nm, i �= j

}
.

Definition 4.1 For any v ∈ ���, the neighborhood of the integer point v is defined as N (v) =
{v + d : d ∈ D} ∩ ���.

Definition 4.2 A point v∗ ∈ ��� is said to be a discrete local minimizer of Problem (T Pγ,� )1 if
J̄ (v∗)≤ J̄ (v) for any v ∈ N (v∗)∩���. Furthermore, if J̄ (v∗)< J̄ (v) for any v ∈ N (v∗)∩���,
then v∗ is said to be a strict discrete local minimizer.

Definition 4.3 A point v∗ ∈ ��� is said to be a discrete global minimizer if J̄ (v∗) ≤ J̄ (v)

holds for any v ∈ ���.

Definition 4.4 A sequence
{
vi

}k
i=1 is called a discrete path in ��� between v1,∗ ∈ ��� and

v2,∗∈ ��� if the following conditions are satisfied:

1. For any i = 1, . . . , k, vi∈ ���;
2. For any i �= j , vi �= v j ;
3. v1 = v1,∗, vk = v2,∗; and
4.

∥∥vi+1 − vi
∥∥ = 2, i = 1, . . . , k − 1.

We note that ��� is a discrete path connected set. That is, for every two different points
v1, v2, we can find a path from v1 to v2 in ���. Clearly, ��� is bounded.

Algorithm 4.1 (Local search)

1. Choose a v0∈ ���;
2. If v0 is a local minimizer, then stop. Otherwise, we search the neighborhood of v0 and

obtain a v ∈ N (v0) such that J̄ (v) < J̄ (v0).
3. Let v0 = v, go to Step 2.

After obtaining a local minimizer, we will use a filled function to escape from it. We
introduce the following filled function [11] :

P (v, r, ρ) = 1

r + J̄ (v)
exp

(

−
∥∥v − v1,∗∥∥2

ρ2

)

. (24)

The function P (v, r, ρ) has the following properties:

Theorem 4.1 Suppose that r + J̄
(
v1,∗) > 0 and that v1,∗ is a local minimal solution of

J̄ (v). Then v1,∗ is a strict local maximal solution of P (v, r, ρ) over N
(
v1,∗). That is, for

any v ∈ N
(
v1,∗), P (v, r, ρ) < P

(
v1,∗, r, ρ

)
.

Proof Since v1,∗ is a local minimal solution of J̄ (v), it follows that for any d ∈ D, if
v1,∗ + d ∈ N

(
v1,∗), then

J̄
(
v1,∗ + d

) ≥ J̄
(
v1,∗) ,
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and hence

r + J̄
(
v1,∗ + d

) ≥ r + J̄
(
v1,∗) > 0.

Thus,

1

r + J̄
(
v1,∗ + d

) exp

(

−‖d‖2

ρ2

)

<
1

r + J̄
(
v1,∗) ,

i.e.,
P

(
v1,∗ + d, r, ρ

)
< P

(
v1,∗, r, ρ

)
. 	


Let J̄ up be an upper bound for the function value of J̄ (v) over ���. We have the following
theorem.

Theorem 4.2 Suppose that the parameters r , ρ are chosen such that

r + J̄
(
v1,∗) > 0, (25)

ρ2 ln
r + J̄ up

r + J̄
(
v1,∗) < 1, (26)

where J̄ up is an upper bound of J̄ (v) in ���. Furthermore, for any v1, v2 ∈ ���, suppose

J̄
(
v1

) ≥ J̄
(
v1,∗), J̄

(
v2

) ≥ J̄
(
v1,∗) and

∥∥v1 − v1,∗∥∥2
>

∥∥v2 − v1,∗∥∥2
. Then,

P
(
v1, r, ρ

)
< P

(
v2, r, ρ

)
. (27)

Proof Since

r + J̄
(
v2

)

r + J̄
(
v1

) ≤ r + J̄ up

r + J̄
(
v1,∗) < exp

(
1/ρ2) < exp

(∥∥v1 − v1,∗∥∥2 − ∥∥v2 − v1,∗∥∥2

ρ2

)

,

it follows that (27) is satisfied. 	

Let the parameters r, ρ be chosen to satisfy the conditions (25), (26). If J̄ (v) is not a

constant with respect to v ∈ ���, we choose a sufficiently small h which satisfies

0 < h ≤ ∣∣ J̄
(
v1) − J̄

(
v2)∣∣ . (28)

for any v1, v2 ∈ ��� such that J̄
(
v1

) �= J̄
(
v2

)
.

Theorem 4.3 Suppose that

0 < r + J̄
(
v1,∗) < h. (29)

Then, P
(
v1 + d, r, ρ

)
< 0 if and only if J̄

(
v1 + d

)
< J̄

(
v1,∗).

Proof Suppose P
(
v1 + d, r, ρ

)
< 0. Then, it follows from ( 24) that r + J̄

(
v1 + d

)
. Now,

by (29), r + J̄
(
v1,∗) > 0. Thus, J̄

(
v1 + d

)
< J̄

(
v1,∗).

To prove the “only if” statement, we assume that J̄
(
v1 + d

)
< J̄

(
v1,∗). Then, by (28),

we see that J̄
(
v1,∗) − J̄

(
v1 + d

) ≥ h. Thus,

r + J̄
(
v1 + d

) ≤ r + J̄
(
v1,∗) − h < 0.

Therefore, P
(
v1 + d, r, ρ

)
< 0. 	


123



220 J Glob Optim (2009) 44:213–225

Theorem 4.4 Let r, ρ satisfy the conditions (29), (26). Then, any discrete local minimal
solution of the filled function P (v, r, ρ) over ��� is in the set {v ∈ ��� : P (v, r, ρ) < 0}.
Proof Suppose the conclusion was false. Then, P (v∗, r, ρ) ≥ 0, where v∗ is a minimal
solution of P (v, r, ρ). Thus,

J̄
(
v∗) ≥ J̄

(
v1,∗) (30)

by Theorem 4.3. We claim that there exists a d∗ ∈ D such that
∥
∥v∗ + d∗ − v1,∗∥∥ >

∥
∥v∗ − v1,∗∥∥ . (31)

To establish this claim, we note that
∥
∥v∗ − v1,∗∥∥2 = ∑n

i=1

(
v∗

i − v1,∗
i

)2
. There are two

cases. (i) there exists some i , j such that v∗
i − v1,∗

i > 0 and v∗
j − v1,∗

j < 0. (ii) v∗
k − v1,∗

k ≥ 0

or v∗
k − v1,∗

k ≤ 0 for all 1 ≤ k ≤ n. For this case, let i = max1≤k≤n

∣
∣
∣v∗

k − v1,∗
k

∣
∣
∣ and

j = min1≤k≤n

∣
∣
∣v∗

k − v1,∗
k

∣
∣
∣. Now, by choosing d∗ = di,− j , we establish the claim. To proceed

further, since v∗ is a minimal solution of P (v, r, ρ), P (v∗ + d∗, r, ρ) ≥ P (v∗, r, ρ) ≥ 0.
Thus,

J̄
(
v∗ + d∗) ≥ J̄

(
v1,∗) (32)

by Theorem 4.3. By virtue of (30), (31) and (32), it follows from Theorem 4.2 that
P (v∗ + d∗, r, ρ) < P (v∗, r, ρ). This is a contradiction as v∗ is a minimal solution of
P (v, r, ρ). Thus, the conclusion of the theorem must be satisfied. 	


From Theorem 4.3, we know that

{v ∈ ��� : P (v, r, ρ) < 0} = {
v ∈ ��� : J̄ (v) < J̄

(
v1,∗)} .

On this basis, we can construct an algorithm which is based on the following idea. Choose an
initial point v1∈ ��� and use Algorithm 4.1 to find a local minimal v1,∗. Then, we construct a
filled function to find its local solution. If we can find a point v2 such that P

(
v2, r, ρ

)
< 0,

then we use v2 as a new initial point and repeat the above process. Otherwise, we consider
v1,∗ as a minimizer of J̄ (v) over ���.

Algorithm 4.2 (Discrete filled function method)

1. Take an initial point v1 ∈ ��� and let � = {
v1

}
.

2. From v1, use Algorithm 4.1 to find a local minimizer v1,∗ of J̄ (v) over ���. If it has been
computed in a local search, we add it to the set �.

3. Construct a filled function

P (v, r, ρ) = 1

r + J̄ (v)
exp

(

−
∥∥v − v1,∗∥∥2

ρ2

)

where r, ρ satisfy the conditions (29) and (26). Use Algorithm 4.1 to find its local
minimizer. For each v ∈ ���, if it has been computed in a local search, we add it to
the set �. If we find a v2 ∈ ��� such that P

(
v2, r, ρ

)
< 0, let v1 = v2 and go to Step 2.

In the local search, if we find a v2 ∈ �, then go back to the father point v and choose
another direction d ∈ D to find a local minimizer. If we cannot find any v2 ∈ ��� such
that P

(
v2, r, ρ

)
< 0 or there is no feasible direction to search in, then v1,∗ is an optimal

solution of J̄ (v) over ���.
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In Algorithm 4.2, we use the set � to avoid finding a point which may have been computed
repeatedly in the search for a local minimizer of the discrete filled function since any two
points in ��� are path-connected.

5 Numerical example

In this section, we will apply the algorithms developed in Sects. 3 and 4 to a test problem.

Example 5.1 In this example, we will study the optimal train control problem, which was
first presented in [2] and re-considered in [5]. The dynamical system is

ẋ1 = x2

ẋ2 = ϕ (x2) u1 + ζ2u2 + ρ (x2) ,

where x1 is the distance along the track, x2 is the speed of the train, u1 is the fuel setting and
u2 models the deceleration applied to the train by the brakes. The function

ϕ (x2) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ1/x2, x2 ≥ ζ3 + ζ4,
ζ1/ζ3 + η1 (x2 − (ζ3 − ζ4))

2

+ η2 (x2 − (ζ3 − ζ4))
3, ζ3 − ζ4 ≤ x2 ≤ ζ3 + ζ4,

ζ1/ζ3, x2 ≤ ζ3 − ζ4,

where

η1 = ζ1

{{
1

ζ3 + ζ4
− 1

ζ3

}
3

4ζ 2
4

+ 1

2ζ4 (ζ3 + ζ4)
2

}

and

η2 = ζ1

{

−
{

1

ζ3 + ζ4
− 1

ζ3

}
3

4ζ 3
4

− 1

4ζ 2
4 (ζ3 + ζ4)

2

}

,

represents the tractive effort of the locomotive. The function ρ is the resistive acceleration
due to friction, given by

ρ (x2) = ζ5 + ζ6x2 + ζ7x2
2 ,

ζi , i = 1, . . . , 7, are constants with given values ζ1 = 1.5, ζ2 = 1, ζ3 = 1.4, ζ4 = 0.1,
ζ5 = −0.015, ζ6 = −0.00003 and ζ7 = −0.000006. The initial state is x (0) = (0, 0)� and
the discrete-valued control satisfies u = [u1, u2] ∈ U = {

(1, 0)� , (0, 0)� , (0,−1)�
}
. Our

aim is to find a switching sequence of discrete-valued control, such that x1 (1500) = 18000,
x2 (1500) = 0, and the switching times such that the fuel cost

J0 (u) =
∫ 1500

0
u1dt

is minimized. In this problem, we assume that the maximum number of switchings is 7. Since
x2 (t) is the speed, x2 (t) ≥ 0, for all t ∈ [0, 1500].

For this optimal control problem, it was solved via a time scaling transform in [5]. In this
paper, we will use the discrete filled function method to find the optimal switching sequence
and the optimal control software MISER 3.3 to solve Problem

(
T Pγ,�

)
2 .
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We choose

r = h

2
− J̄

(
v1,∗) , h = 0.01, J̄ up = 3000,

1

ρ2 = 1 + ln
J̄ up − J̄

(
v1,∗) + h/2

h/2
.

In the local search of the switching sequence of a discrete control, if the integration of a state
system or costate system exceeds a given constant, we will assign a large value to the cost
corresponding to this sequence. We use MISER as a sub-program to solve this optimal control
problem. The cost obtained is 202.4759, which is slightly less than 202.6704 obtained in [5].
The duration of the time used by the control (0,−1)� is 2.47197, which is also slightly less
than that obtained in [5], which is more than 2.5. All obtained results are depicted in Figs.
1–5. Figure 1 depicts the time scaling transformation of t (s) against s. Figures 2 and 3 depict
the optimal state x1 (t) and x2 (t) against the time t . Figures 4 and 5 depict the optimal control
u1 (t) and u2 (t) against the time t .

For the method reported in [5], it is basically a local method. Thus, a good initial guess
is needed in the optimization process so as to obtain a good local optimal solution. Also, it
cannot be ensured that the assumption on the maximum number of switchings is satisfied.
For the method presented in this paper, we can solve the problem from any initial point as a
discrete filled function has been incorporated in the algorithm. For our algorithm, once a local
minimal solution is obtained, we will search for a local minimal solution of the corresponding
filled function. Using this as an initial guess for the next optimization, we will obtain a better
local optimal solution. This process is repeated until there exists no local optimal solution of
the corresponding discrete filled function. Furthermore, we can be assured that the solution
obtained will satisfy the assumption on the maximum number of switchings.
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Fig. 1 The profile of the enhancing transformation t (s) versus to s
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Fig. 2 The profile of optimal state x1 (t)
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Fig. 3 The profile of optimal state x2 (t)

6 Conclusion

In this paper, we developed a new computational method to solve a discrete-valued optimal
control problem with the maximum number of switchings being prefixed as a two-level
optimization problem. In the first level, we use MISER 3.3 to solve it. In the second level,
a discrete filled function method is constructed and then used to solve it. To illustrate the
method, a numerical example is solved.
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Fig. 4 The profile of optimal control u1 (t)
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Fig. 5 The profile of optimal control u2 (t)
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